33 research outputs found

    A summary report on the Flat-Plate Solar Array Project Workshop on Transparent Conducting Polymers

    Get PDF
    The proceedings and technical discussions of a workshop on Transparent Conducting Polymers (TCP) for solar cell applications are reported. This is in support of the Device Research Task of the Flat-Flate Solar Array Project. The workshop took place on January 11 and 12, 1985, in Santa Barbara, California. Participants included university and industry researchers. The discussions focused on the electronic and optical properties of TCP, and on experimental issues and problems that should be addressed for high-efficiency solar cell application

    Broadband optical radiation detector

    Get PDF
    A method and apparatus for detecting optical radiation by optically monitoring temperature changes in a microvolume caused by absorption of the optical radiation to be detected is described. More specifically, a thermal lens forming material is provided which has first and second opposite, substantially parallel surfaces. A reflective coating is formed on the first surface, and a radiation absorbing coating is formed on the reflective coating. Chopped, incoming optical radiation to be detected is directed to irradiate a small portion of the radiation absorbing coating. Heat generated in this small area is conducted to the lens forming material through the reflective coating, thereby raising the temperature of a small portion of the lens forming material and causing a thermal lens to be formed therein

    Double-beam optical method and apparatus for measuring thermal diffusivity and other molecular dynamic processes in utilizing the transient thermal lens effect

    Get PDF
    A sample material was irradiated by relatively high power, short pulses from a dye laser. Energy from the pulses was absorbed by the sample material, thereby forming a thermal lens in the area of absorption. The pulse repetition rate was chosen so that the thermal lens is substantially dissipated by the time the next pulse reaches the sample material. A probe light beam, which in a specific embodiment is a relatively low power, continuous wave (cw) laser beam, irradiated the thermal lens formed in the sample material. The intensity characteristics of the probe light beam subsequent to irradiation of the thermal lens is related to changes in the refractive index of the sample material as the thermal lens is formed and dissipated

    Pulsed radiolysis of model aromatic polymers and epoxy based matrix materials

    Get PDF
    Models of primary processes leading to deactivation of energy deposited by a pulse of high energy electrons were derived for epoxy matrix materials and polyl-vinyl naphthalene. The basic conclusion is that recombination of initially formed charged states is complete within 1 nanosecond, and subsequent degradation chemistry is controlled by the reactivity of these excited states. Excited states in both systems form complexes with ground state molecules. These excimers or exciplexes have their characteristics emissive and absorptive properties and may decay to form separated pairs of ground state molecules, cross over to the triplet manifold or emit fluorescence. ESR studies and chemical analyses subsequent to pulse radiolysis were performed in order to estimate bond cleavage probabilities and net reaction rates. The energy deactivation models which were proposed to interpret these data have led to the development of radiation stabilization criteria for these systems

    Method of making hollow elastomeric bodies

    Get PDF
    Annular elastomeric bodies having intricate shapes are cast by dipping a heated, rotating mandrel into a solution of the elastomer, permitting the elastomer to creep into sharp recesses, drying the coated mandrel and repeating the operation until the desired thickness has been achieved. A bladder for a heart assist pump in which a cylindrical body terminating in flat, sharp horizontal flanges fabricated by this procedure has been subjected to over 2,500 hours of simulated life conditions with no visible signs of degradation

    Effects of space environment on composites: An analytical study of critical experimental parameters

    Get PDF
    A generalized methodology currently employed at JPL, was used to develop an analytical model for effects of high-energy electrons and interactions between electron and ultraviolet effects. Chemical kinetic concepts were applied in defining quantifiable parameters; the need for determining short-lived transient species and their concentration was demonstrated. The results demonstrates a systematic and cost-effective means of addressing the issues and show qualitative and quantitative, applicable relationships between space radiation and simulation parameters. An equally important result is identification of critical initial experiments necessary to further clarify the relationships. Topics discussed include facility and test design; rastered vs. diffuse continuous e-beam; valid acceleration level; simultaneous vs. sequential exposure to different types of radiation; and interruption of test continuity

    Experimental procedures for molecular weight determination by light scattering

    Get PDF
    Molecular weight determination of polymers from angular dependence of light scatterin

    Dielectric strength of rigid urethane foam

    Get PDF
    Dielectric strength of rigid urethane foam for electronic packaging in space applicatio
    corecore